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The tortuosity of a capillary-condensed film of inviscid fluid adsorbed onto fractal substrates as a function of
the filling fraction of the fluid has been calculated numerically. This acts as a way of probing the multiscale
structure of the objects. It is found that the variation of tortuosity � with filling fraction � is found to follow
a power law of the form ���−� for both deterministic and stochastic fractals. These numerically calculated
exponents are compared to exponents obtained from a phenomenological scaling and good agreement is found,
particularly for the stochastic fractals.
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I. INTRODUCTION

There has been considerable interest recently in the un-
usual transport properties of porous fractal materials. Under-
standing the correlation between these properties and the ma-
terial’s microstructure is crucial for their use to become
widespread. Examples of man-made porous fractal materials
include aerogel �1� and metal foams �2�, while naturally oc-
curring examples include fracture surfaces �3� and the lungs
�4�. In all these cases the multiscale structure has a signifi-
cant impact on important properties. For example, the per-
meability of a fracture, which is used to determine macro-
scopic flow rates through porous materials, is substantially
increased if the fracture interface has fractal characteristics
�5�. Moreover, multiscale materials can possess remarkable
transport properties �thermal conductivity and permeability
for example� when compared to more conventional materi-
als. Aerogel, for instance, is 39 times more insulating than
the best fiberglass, yet 1000 times less dense �6�. The char-
acterization of porous materials and their transport properties
has historically been limited to the measurement of macro-
scopic parameters, which tells one little about the mesos-
copic structure of these materials. There has been much
progress �7,8� in using microtomography images to generate
three-dimensional �3D� networks from which flow properties
can be predicted. However, it is not always easy to draw a
relationship between observable transport properties and
simple geometrical quantities. Furthermore, despite the ad-
vances mentioned, predictions of these properties are still
largely based on empirical relationships based on observable
characteristics of the geometry, such as porosity �9�.

Aerogel is of particular interest in this work. An experi-
mental technique has recently been described �10�, which
measures the tortuosity, defined momentarily, of various
samples of aerogel as a function of the volume filling frac-
tion � of an adsorbed superfluid 4He film on the surface of
the aerogel. Tortuosity � quantifies the tortuous or twisted
nature that a fluid has to take to pass through a porous ma-
terial. There are many ways this twisted path can be quanti-
fied, with perhaps the most obvious being the length of the
actual paths of fluid molecules. In both �10� and this work

tortuosity is defined as a dimensionless quantity which quan-
tifies the added mass effect caused by fluid flowing around
an obstruction �11�, �= �*

� f

, where �* is the effective density

caused by the added mass effect and � f is the bulk fluid
density. The added mass effect simply describes the inertial
�as opposed to viscous� drag that the porous material exerts
on the fluid as the latter is accelerated relative to the former
�12�. Suitably normalized, this added mass is a quantity
which only depends on the geometry of the porous material.
For a straight, nonobstructed flow path �=1, whereas for any
twisted flow path ��1. As will be seen later, tortuosity has
a simple physical interpretation of the ratio of the kinetic
energies of an unobstructed flow to the actual tortuous flow
through the porous medium.

The idea of calculating the tortuosity of a fractal porous
material with varying amounts of adsorbed fluid is as fol-
lows: when the fractal is saturated with fluid, the majority of
the fluid only “sees” the large scale features of the flow. If
thinner helium films are deposited on the fractal surface, then
gradually small scale features of the fractal become impor-
tant. In this way, the film thickness acts as a way of probing
different length scales of the fractal. This “defractalization”
idea is shown schematically in Fig. 1. It was found in �10�
that the tortuosity scaled with the volume of condensed he-
lium as a power law, with an exponent close to −1. This can
be treated as the scaling of a dynamical property, i.e., a trans-
port property, in a fractal environment.

A phenomenological argument has been given by the au-
thors �13� for how the tortuosity varies with the filling frac-
tion � of fluid in the porous medium, with the exponent
being a function of the box-counting dimension Df �see �14�
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FIG. 1. �Color online� Schematic representation of the adsorp-
tion of a liquid film on a fractal surface, with the shaded area
representing the adsorbed fluid. As the film thickness increases
smaller scale features become less important. The Koch curve has
been used for ease of representation, although this is a surface frac-
tal, as opposed to the mass fractal structure being considered in this
work.
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for definition� and the random walk dimension Dw. Dw is
defined by considering the diffusion constant D of a random
walker, whose average mean square displacement �R2�t��
=Dt. When this random walker is constrained to a fractal
network, D becomes dependent on the distance L traveled by
the random walker, D�L��L2−Dw, where Dw=2 for a non-
fractal object �15�. There are three key statements needed to
obtain the scaling: �i� D�L��L2−Dw is range dependent on a
fractal object, �ii� D�L� is related to electrical conductivity
��L� via the Einstein relation, D�L�= �kBT��L�� / �qn�L��,
where kB is Boltzmann’s constant, T is the temperature, n�L�
is the concentration of current carrying particles, and q their
charge, and �iii� that the equivalence between the hydrody-
namical problem of an inviscid, incompressible fluid flowing
in a pore space and that of the electrical conductivity � of a
nonconducting, rigid porous material, containing a conduct-
ing pore fluid of conductivity � f allows the tortuosity � to be
expressed as �=

� f

� � �16,17�. The explicit form of the scaling
obtained is

� � ��Dw−2�/�Df−dE�, �1�

where dE is the Euclidean dimension.
This paper aims to investigate the validity of this relation-

ship between the scaling of tortuosity and the fractal charac-
teristics of the adsorbant material. This is done by using both
the phenomenological scaling argument given in Eq. �1� and
numerical simulations. The structure of the paper is as fol-
lows: the numerical techniques are briefly discussed in the
next section, followed by a brief discussion on the signifi-
cance of tortuosity. We then present our results on the range
of validity of Eq. �1�.

II. NUMERICAL TECHNIQUES

A. Lattice gas model

In order to simulate the experiments of �10� numerically,
it is necessary to have a model of the fractal-adsorbant sys-
tem. The morphology of an adsorbed liquid film is governed
by the capillary forces, van der Waals forces, and chemical
potential of the liquid, where gravity is neglected, as it has
been shown to have no effect on the adsorption process in
aerogel �18�. It is particularly important that the geometrical
complexity of the problem is retained as this is crucial to
determining the tortuosity of a given fractal. This eliminates
the possibility of using network models, where the porous
material is modeled as a collection of independent pores of
simple geometry but varying sizes, given by the pore size
distribution, as in �19�.

The method we use is virtually identical to that developed
in �20�, which incorporates the essential physical ingredients,
in particular the energetic and geometric disorder of the
solid. We consider the Hamiltonian of a simple lattice-gas
model in the presence of geometrical disorder. Only the en-
ergies due to fluid-fluid interaction and solid-fluid interac-
tion, of strengths wff and wsf, respectively, between nearest
neighbors on the lattice, are considered. The Hamiltonian is

H = − wff�
i	j

nn


i
 j�i� j − wsf�
i	j

nn

�
i�i�1 − � j� + 
 j� j�1 − �i�� ,

�2�

where the sums run over nearest-neighbor sites. 
i is a fluid
occupation variable, which indicates whether site i of the
lattice is occupied by fluid �
i=1� or not �
i=0�. �i is a
quenched variable that characterizes the presence of solid
particles at site i ��i=0 if solid is present and �i=1 if not�.

The thermodynamic behavior of the fluid in the presence
of the geometric disorder is given by the solution of Eq. �2�
in the grand canonical ensemble, which is treated using local
mean field theory �LMFT� �21�, leading to a set of N coupled
nonlinear equations for the densities �i= �
i�i�, where �¯�
denotes ensemble average.

�i =
1

1 + e−Xi
. �3�

Here Xi=�	� j
nn�wff� j +wsf�1−� j��+

. For a given configu-

ration of porous material, described by the set �i, the sorp-
tion isotherms

� f�
,T� =
1

N
�

i

�i �4�

are obtained by increasing or decreasing the chemical poten-
tial in steps �
 and using an iteration procedure to solve the
equations. The initial condition is all nongel sites empty for
adsorption ��i=0� and all nongel sites full for desorption
��i=1�. At each subsequent 
, the converged solution at 

−�
 for adsorption or 
+�
 for desorption is used to start
the iterations.

It has been shown in �22,23� that the usual periodic
boundary conditions, employed in �24�, for example, are not
acceptable for the simulation of desorption isotherms, as they
suppress nucleation of the low density phase and therefore
display greatly exaggerated hysteresis. In order to prevent
this, one surface of the simulated system is connected to a
reservoir of bulk vapor for desorption calulations �23�. This
condition is implemented in the z direction, while in the x
and y directions periodic boundary conditions are used. For
ease of implementation of the finite element method de-
scribed in the next section, a square lattice has been used for
the 2D case, and a simple cubic for the 3D case.

B. Obtaining the velocity field

Having obtained the morphology of the adsorbed fluid
film, the calculation of the velocity field of the fluid consists
of the solution of the equations of fluid motion, with the
geometry defined by the presence of fluid sites on the lattice-
gas model of adsorption described in the previous section.
We introduce the velocity potential �, defined so that ��
=v, where v is the velocity field of an incompressible, invis-
cid fluid through the porous medium due to an applied pres-
sure gradient. The porous medium occupies the space 0	x
	L, where L is large compared to the size of the pores, and
has a total lateral area A. A potential difference �L is applied
across the porous medium and zero-flux boundary conditions
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are enforced on all other boundaries. The conditions of in-
compressibility and irrotationality associated with the super-
fluid 4He lead to a classic potential problem for the velocity
potential �, which has been solved using standard finite ele-
ment schemes �25�

The filling fraction � is defined by considering the func-
tion ��r�, which is equal to 1 when r is occupied by fluid and
0 elsewhere. Clearly, �= 1

LA���r�d3r. The function ��r� can
be seen to be closely related to the fluid occupancy variable
�i of the previous section. In fact, �i is simply a discretized
version of ��r� on the lattice.

III. TORTUOSITY

As stated previously, the tortuosity used in this work is a
measure of the added mass effect caused when a fluid is
accelerated around a solid object. This added mass effect is
caused by the inertial drag that the solid exerts on the fluid
�12�. In the case where the solid object is rigid, i.e., its dis-
placement can be neglected, it has been shown �26� that the
effective density �* of the fluid due to the added mass effect
is given by �*=�� f, where � f is the bulk fluid density and
��1 is a purely geometrical quantity independent of fluid or
solid densities. This is the tortuosity considered in this work.

An expression for the tortuosity based on the velocity
field is more convenient for our purposes. The tortuosity de-
fined above can be considered as the ratio of the kinetic
energy of an equivalent unobstructed flow to the kinetic en-
ergy of a flow that has to follow the tortuous path and thus
has a higher effective density. Using this, a relationship has
been obtained for the tortuosity of a fluid in a fully saturated
pore space in �11�. Here, these arguments are extended to

take account of a partially saturated pore space.
Solving the potential problem for the tortuous flow, the

kinetic energy of the tortuous flow is given by E���
= 1

2� f���r�����2d3r. A porous material whose pores were all
straight and perfectly aligned with the direction of the in-
coming flow would provide zero resistance to the flow. The
velocity would only be nonzero in the x direction and would
be given by ��

�x =
�L

L . Taking the ratio of the kinetic energies of
the two flows gives

� =
�A��L�2

L���r�����2d3r
. �5�

This reduces to the expression given in �11� when the
pores are saturated with fluid, i.e. �=P, where P is the po-
rosity of the material. It should be noted that definitions of
tortuosity using the resistivity or acoustic properties of the
fluid saturated porous material are equivalent to this hydro-
dynamic definition �16,26�.

IV. RESULTS

Results are now presented from the numerical simulations
of adsorption in stochastic and deterministic fractal environ-

FIG. 2. The generators of the fractals used for unsaturated simu-
lations, along with the numerically obtained tortuosity-filling frac-
tion power law exponent �num and the predicted exponent �pre.

(b)

(a)

FIG. 3. Illustration of the generation of deterministic fractals
from the generator for the unsaturated simulations. �a� n=1, �b� n
=4.
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ments in both 2D and 3D. The generators for the determin-
istic fractals �27� are shown in Fig. 2, along with the numeri-
cally calculated value of the exponent, �num, in the power law
���−�. Also shown is the predicted value of the exponent
from Eq. �1�, �pre. This figure is placed here primarily for
reference as in the text the fractals are referred to according
to their position in the figure. Fractal 1 is associated with the
top left generator in the figure. The generators are then
counted by progressing along the rows, i.e., position �row 2,
col 1� in the figure is fractal 4.

The black squares in the 2D generators are the solid ma-
terial, and the generator is applied iteratively to the solid
squares to give a fractal distribution of solid material. In the
3D case three cross sections of the generator are shown. The
black squares again represent solid material and the genera-
tor is applied iteratively to these squares. An example for the
2D case is given in Fig. 3, which shows the generator and the
resultant fractal at iteration number n=4. Stochastic fractals
have also been considered and ten 2D and five 3D diffusion
limited aggregation �DLA� clusters have been generated us-
ing the original algorithm of �28�.

The lattice gas model only contains two free parameters,
the fluid-solid interaction parameter, y=wsf /wff, and the tem-
perature T. Unless otherwise stated, the values of y and T are
set at 2.0 and 0.8, respectively, with wff =1 being the energy

unit and wff /kB the temperature unit. This temperature cor-
responds to T /Tc=0.8 in the 2D case and T /Tc�0.53 in the
3D case, where Tc is the critical temperature for hysteresis.

A. Morphology of the adsorbed films

It was suggested in �29� that by increasing the filling frac-
tion of adsorbed fluid in a fractal material, one could probe
different length scales of the fractal geometry by defractaliz-
ing the object, but no evidence was provided that this was
the case. Figure 4 shows the configuration of adsorbed fluid
films at different filling fractions for a 2D DLA cluster of
linear size L=100, whereby linear size is meant the diameter
of a circle in which the DLA cluster fits. The particles in the
DLA constitute the solid surface of the material.

As the filling fraction increases, the thickness of the film
naturally increases smearing out the small scale features.
Figure 4�c� shows the importance of the geometrical disor-
der. While there are large regions of the fractal where only a
thin uniform film has developed on the fractal, there are
“bottleneck” regions where fairly major condensation events
have occurred and the “pore” has been completely filled with
fluid. These avalanches of fluid are caused by the geometri-
cal disorder of the system and the complex energy landscape
this provides for the adsorbed fluid �20�.
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FIG. 4. Morphology of the adsorbed fluid on a 2D DLA of linear size L=150. As the filling fraction increases small scale features are
smoothed out. The shading is the value of the velocity potential �. �a� �=0.05, �b� �=0.10, �c� �=0.15, �d� �=0.20.
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Similar events occur in 3D, although these are harder to
visualize. Figure 5 shows a 2D cross section, taken from an
adsorption process in a 3D DLA cluster of linear dimension
L=50. The first stage of the adsorption process is the forma-
tion of a liquid layer that coats the DLA cluster strands. As
the filling fraction increases, the gaps between proximate
groups of gel strands are bridged. The process is completed
by a major final condensation event which fills the large void
�23,30�.

When compared to the adsorption patterns in determinis-
tic fractals, it is clear that the disorder of the stochastic frac-
tals has a large effect on the morphology of the adsorbed
film. Figure 6 shows the adsorption pattern on a determinis-
tic fractal, where the adsorption pattern is much more regu-
lar, in the sense that there is a strict symmetry imposed by
the geometrical disorder.

These effects can also be observed in the adsorption iso-
therms of the systems. Figure 7 shows the adsorption iso-
therms for a 3D DLA cluster and deterministic fractal 7. The
fluid morphology patterns described previously are clearly
visible in the adsorption isotherms. The DLA clusters’ iso-
therms show a slow adsorption at low chemical potentials
�low filling fractions�, which corresponds to the initial coat-
ing of the strands, and then gradually steepens as larger and
larger crevices are filled in with fluid, until a final avalanche
sweeps the whole system, as shown by the large final jump in

the adsorption isotherms. Note, however, that overall, the
isotherm possesses a largely smooth characteristic, albeit a
steepening one. On the other hand, the deterministic fractal
isotherms have a much more stepped appearance, with the
height of the steps gradually growing larger. This difference
can be explained by the different range of length scales
present in the different type of fractals. The deterministic
fractal, due to its method of construction, contains features of
a small number of length scales, whose number are equal to
its iteration number. The steps in the adsorption isotherm can
be viewed as points where there is a coherent filling of crev-
ices of these length scales. This also explains the increasing
size of the step height as larger and larger features of the
deterministic fractal are filled. DLA clusters, on the other
hand, have a much larger number of length scales and hence
produce a smoother isotherm.

B. Fractal dimensions of the adsorbed fluid

1. Box counting dimension Df

A more quantitative analysis of this defractalization can
be performed by box counting �31� the fluid morphology at
different filling fractions and observing the variation of the
fractal dimension and the range of length scales, a to �max,
over which fractal behavior can be observed. Figure 8 shows
results from the box counting algorithm for different filling
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FIG. 5. Cross section taken at the center of the domain of an adsorption simulation for a 3D DLA cluster of linear size L=50 for y
=2.0 and kBT=0.8. The shading in this case is the value of the velocity potential �. �a� �=0.33, �b� �=0.47, �c� �=0.69, �d� �=0.94.
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fractions for a 3D DLA cluster and a 3D deterministic fractal
�fractal number 7�. At low filling fractions a clear power law
with a noninteger exponent is visible for over a decade of
length scales. As the filling fraction is increased the upper
limit of fractal behavior �max remains unchanged, while the
lower limit a progressively becomes greater. Eventually, a
point is reached where it becomes meaningless to talk of a

fractal regime, as the extent over which the noninteger expo-
nent can be observed becomes too small. The box counting
results with �=0.430 show an example of such a regime,
where the adsorbed fluid is Euclidean with dimension 2.

Figure 9 shows the minimum length scale a for which
power law behavior is observed as a function of � for a 2D
DLA cluster and deterministic fractal 1. In the case of the
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FIG. 9. �Color online� The minimum length scale a at which
fractal behavior can be observed against the filling fraction for �a� a
2D DLA cluster of linear size L=100 and �b� a 2D deterministic
fractal �fractal number 1� of linear size L=125.
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FIG. 6. Morphology of the adsorbed fluid on a deterministic
fractal of linear size L=126. �a� �=0.17 �b� �=0.32.
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FIG. 7. Adsorption isotherms for 3D deterministic �dashed line�
and DLA �solid line� fractals. Deterministic fractals display a more
stepped adsorption isotherm than stochastic fractals.
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FIG. 8. �Color online� Results from the box counting algorithm
showing the number of boxes N�l� of size l required to cover the
fluid for �a� a 2D DLA cluster of linear size L=100 and �b� a 3D
deterministic fractal �fractal number 7� of linear size L=81. In both
cases it is clear how the minimum length scale at which fractal
behavior is observed increases with filling fraction.

S. W. COLEMAN AND J. C. VASSILICOS PHYSICAL REVIEW E 78, 016308 �2008�

016308-6



DLA cluster the increase of a is fairly smooth with filling
fraction, whereas in the case of the deterministic fractal,
three clear jumps in a can be observed with a remaining
relatively constant in between these jumps. The magnitude of
these jumps increases with increasing filling fraction. This
behavior is not surprising given the different nature of the
stochastic and deterministic fractals and is another manifes-
tation of the effect of the limited number of discrete scales of
the deterministic fractal �in this case three scales�. The
stepped nature of the minimum length scale is the same ef-
fect as the stepped nature of the adsorption isotherm for the
deterministic case, in that the discrete scales of the determin-
istic fractals seem to be removed by an avalanche of fluid
which causes a sudden jump in a. On the other hand the
smooth adsorption isotherm of the stochastic fractals is re-
flected in the smooth nature of the increase of a.

2. Random walk dimension Dw

In order to compare the predicted exponent of the scaling
of tortuosity with filling fraction from Eq. �1�, it is necessary
to perform random walks on the adsorbed fluid morpholo-
gies. This is achieved using the exact enumeration algorithm
described in �32�. In both 2D and 3D cases, random walks of
length N=5000 are performed. Typical results are shown in
Fig. 10 for the scaled variables �R2� /a2, where �R2� is the
mean square distance of the random walker, and t / tmin, where
tmin is the average time taken at a given filling fraction for the
random walker to diffuse a distance a. Qualitatively identical
results are obtained for all fractals in both 2D and 3D. The
use of the scaled variables collapses all the data from all
filling fractions onto a single curve, with the expected depar-
tures at large times, where the random walker begins to reach
the edge of the finite size adsorbed fluid. The value of Dw is
extracted by finding the slope of the ensemble average scaled
squared distance with the scaled time for all filling fractions
up to which fractal behavior can be observed, in the regime
1	 �R2� /a2	�max

2 /a2.

C. Numerically obtained variation of the tortuosity with filling
fraction for adsorption

Initially, we shall only consider the variation of tortuosity
with filling fraction in the case of adsorption. The desorption
process is discussed below in detail. Figure 11 shows the
variation for both 2D and 3D deterministic fractals �fractals 1
and 7, respectively� and DLA fractals and it is clear that all
of the data is fitted by a power law of the form ���−�. As
expected the value of the exponents � are significantly lower
in the 3D cases when compared to the 2D cases. This is
simply a manifestation of the fact that it is significantly
easier to generate an obstacle to a 2D flow than to a 3D flow.
The exponent for the 3D DLA cluster, �=1.06, is very close
to the experimentally measured exponent of �=1.16 reported
for aerogel in �10�. One surprising observation is again that
the power law seems to extend in most cases �with the pos-
sible exception of the 2D DLA cluster� to filling fractions
�=�. This is surprising, as one would expect any fractal
characteristics of the fluid flow to be lost at much lower
filling fractions, when the fractal nature of the adsorbed fluid
is lost. However, the lack of data points means it is impos-
sible to draw further conclusions about the behavior of the
tortuosity at filling fractions where the adsorbed fluid no
longer displays fractal behaviour.

D. Desorption and the effect of the fluid interaction parameter
and the temperature

For the tortuosity to be a robust measure of the geometry
of the porous material, it is crucial that its behavior is not
affected by the nature of the adsorption or desorption pro-
cess. The two free parameters of the LMFT theory model of
sorption are the fluid interaction parameter, y, and the tem-
perature, T. Simulations were performed at a range of y val-
ues and at different temperatures on both stochastic and de-
terministic fractals in 2D for both adsorption and desorption.
Figure 12 shows the isotherms for a 2D DLA fractal of linear
size L=100 for y=1.5, 3 and 5. Changing the value of the
fluid-solid interaction has the effect of altering the nature of

FIG. 10. �Color online� Results from the exact enumeration on a
2D DLA cluster of linear size L=100 for a range of filling fractions
�=0.274 to 0.432.
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FIG. 11. Variation of tortuosity with filling fraction plotted on
the log-log axes for ��, solid line� 2D deterministic �fractal 1� with
n=4, ��, dotted line� 2D DLA cluster of linear size L=100, ��,
dashed line� 3D deterministic �fractal 7� with n=4, and ��, dash-
dot line� 3D DLA cluster of linear size L=50.
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the sorption isotherm. The greatest hysteresis is observed at
y=3, but there is significant hysteresis at the other values of
y. The calculated tortuosities for both adsorption and desorp-
tion morphologies are shown in Fig. 13. It is clear that all of
the adsorption morphologies follow a power law ���−1.43

for all values of y, for all filling fractions up to �=0.5. How-
ever, there is a clear departure in the power law behavior for
the desorption morphologies at filling fractions ��0.6, al-
though at lower filling fractions, the desorption morpholo-
gies also follow the power law ���−1.43.

Similar patterns for the sorption isotherms for tempera-
tures T /Tc=0.4, 0.6, 0.7, 0.8, and 0.9 for the same 2D DLA
cluster can be seen in Fig. 14. As expected, the hysteresis
decreases with increasing temperature, to the point where it
has almost disappeared at T /Tc=0.9 �recall Tc=1 in the
simple square 2D lattice�. These isotherms show a similar
trend of decreasing hysteresis with increasing temperature to
those shown in �20� and this acts as a validation of the imple-
mentation of the LMFT model. Figure 15 shows the tortuosi-
ties obtained from these sorption isotherms for both adsorp-
tion and desorption. As in the case of varying y, all the

tortuosities follow a power law ���−1.43 for �	0.6,
whereas for filling fractions larger than this only the adsorp-
tion morphologies follow this power law and the desorption
morphologies show a markedly different behavior.

The filling fractions at which the desorption morphologies
have tortuosities that differ from the power law ���−1.43

can be seen to be those that correspond to fluid densities that
are in the hysteresis regime, whether this hysteresis is caused
by decreased temperature or increased fluid-solid interaction
strength. If one examines these morphologies, the reason for
the departure from the power law behavior is clear. Figure 16
shows the morphologies at nearly identical filling fractions
for the adsorption and desorption isotherms, with �a� and �c�
showing the adsorption branch and �b� and �d� the desorption
branch at y=1.5 and T=0.8. Figures 16�c� and 16�d� show
how the different mechanisms in the desorption process �30�
affect the adsorbed fluid shape at virtually identical filling
fractions. In the desorption case there is clearly a depinning
transition associated with the gas reservoir interface as op-
posed to the more uniform film in the adsorption case. These
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0.9

µ

ρ f

FIG. 12. �Color online� The sorption isotherms for a 2D DLA
cluster of linear size L=100 for y=1.5 �solid line�, and y=3 �dashed
line�. T=0.8 in both cases.

FIG. 13. �Color online� The variation of tortuosity correspond-
ing for both adsorption and desorption, for y=1.5, 3, and 5 and T
=0.8 in all cases. Tortuosities for the adsorption branches all follow
���−1.43, while those from the desorption branches follow this law
only for �	0.6.
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µ

FIG. 14. �Color online� The sorption isotherms for a 2D DLA
cluster of linear size L=100 for T=0.6 �dashed line� and T=0.9
�solid line�. y=1.5 in both cases.

FIG. 15. �Color online� The variation of tortuosity correspond-
ing to the sorption isotherms, i.e., both adsorption and desorption,
for T=0.4, 0.6, 0.7, 0.8, and 0.9 and y=1.5 in all cases. Tortuosities
for the adsorption branches all follow ���−1.43, while those from
the desorption branches follow this law only for �	0.6.
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different morphologies naturally give rise to different tortu-
osities. However, at the lower filling fractions shown in Figs.
16�a� and 16�b�, when the hysteresis in the sorption iso-
therms is no longer present, the adsorbed fluid shape is
largely the same regardless of whether it has been obtained
from adsorption or desorption, and so at lower filling frac-
tions the adsorption and desorption tortuosities agree.

E. Numerical and predicted scaling

Having the values of Df and Dw for the adsorbed fluid
allows the comparison of the numerical scaling with the scal-
ing exponent predicted by Eq. �1�. These results are shown in
Fig. 17. The agreement between the predicted exponents and
numerical exponents is generally good, especially for the
DLA clusters, where the prediction is even sensitive to small
changes in the numerical exponent of different DLA clusters.
The maximum percentage difference between the predicted
and numerical exponents for the DLA clusters is 7.6%. This
is a promising result, as it suggests that the method is ca-

FIG. 17. Comparison of the numerically observed and predicted
exponents for the unsaturated model. ��� 2D deterministic fractals,
��� 2D DLA clusters, ��� 3D deterministic fractals, and ��� 3D
DLA clusters. The straight line predicted �=numerical � again
guides the eye.
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FIG. 16. Morphologies of the adsorbed fluid film for the sample 2D DLA cluster where �a� adsorption branch �=0.189 and �c� adsorption
branch �=0.684. �b� desorption branch �=0.187 and �d� the desorption branch �=0.689 for y=1.5 and T=0.8. Shading is the velocity
potential �.
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pable of determining the different microstructure of different
realizations of the same family of stochastic fractals. The
agreement of the numerical and predicted exponents for the
deterministic fractals is less impressive, although still in gen-
eral good, with the exception of one fractal �fractal 10�.

Excluding this point, the agreement between the predicted
and numerical exponents is good over a wide range of the
value of the exponent. Due to the limited number of deter-
ministic fractals considered, it is difficult to say whether the
predictions are more accurate for the 2D or 3D cases but it
appears that the agreement in 3D is better. This observation,
in tandem with the better agreement for the stochastic frac-
tals, suggests that the predicted exponent is more accurate for
highly porous materials. This could be linked to the presence
of “loops” in the structure, that is regions where the fluid can
be trapped for long periods of time, having a large impact on
the observed tortuosity. Loops are unimportant in DLA clus-
ters, as they are branching structures, and are also far more
improbable in 3D structures when compared to 2D struc-
tures. Dw and Df are certainly not sufficient to capture the
presence of loops in a structure and the presence of loops
could alter the scaling predicted in Eq. �1�.

In general, the predicted exponent is an overestimate, and
in the few cases where the numerical exponent is greater than
the predicted one, it is by a relatively small amount when
compared to the magnitude of the overestimation of the pre-
dicted exponent in some cases, i.e., there are more points
further underneath the line predicted �=numerical � in Fig.
17. Currently, we have no explanation for this.

V. CONCLUSIONS

It has been shown that a lattice gas model of adsorption
combined with a simple finite element method describes ac-

curately the variation of tortuosity with liquid filling fraction
in fractal materials. This defractalization process is a way of
characterizing fractal materials over all length scales as
smaller length scales are removed as the filling fraction in-
creases. It was shown that the pertinent geometric disorder
can be captured using a local mean field theory model. The
scaling of tortuosity of the 3D DLA cluster with filling frac-
tion obtained is in very close agreement with that obtained
for aerogel in �10�. The value of the exponent changes for
different realizations of the DLA cluster and also for differ-
ent fractals and was shown to be independent of the model
parameters y and T. The exponent is the same for desorption
and adsorption when the sorption isotherms coincide, i.e., in
regions where no hysteresis is observed. The numerically
calculated exponent also showed good agreement with the
predicted values using Eq. �1�, especially for the DLA clus-
ters. The exponent � is an important characteristic as it mea-
sures the impact of different length scales on the tortuosity of
the material and is a measure of the multiscale nature of
materials, which can be accessed experimentally. Further
work is needed to understand why the predicted exponent is
always an overestimate and what other fractal characteristics
may be needed to more accurately predict �.
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